Impact of a Televideo Application on Health Care in a Nursing Facility

A component of
Indianapolis Network for
NGI Applications to Telemedicine
Contract N01-LOM-9-3542

Michael Weiner, MD, MPH
Regenstrief Institute, Inc.
Indianapolis, Indiana
Presented on 27 August 2003, Bethesda, Maryland

Potential Benefits of Telemedicine

- Bring health services to patients
- Improve quality of care
 - Decrease time for diagnosis and decision-making
 - Improve continuity of care
 - May improve adherence to treatment
- Continuing medical education
- Reduce costs of some care

Outline for Today

- Clinical setting
- Goals of project
- Assembling equipment in the laboratory
- Deployment in the clinical setting
- Clinical trial
- Conclusions

Clinical Setting

Clinical Setting

- Nursing homes: 2 million high-risk disabled patients with a high prevalence of multiple, chronic illnesses.
- Lockefield Village Health and Rehabilitation Center
 - 240-beds
 - Multiple levels of care
 - Nurse practitioners and 7-10 physicians share call schedule

Goals of Project

Goals of Project

•Implement video-based teleconferencing between health providers at home and patients in a nursing facility

Measure impact on health outcomes

Secure transmission

Peripheral Physicians and Central Patients

Red dots indicate physicians' homes

Assembling Equipment in the Laboratory

Needs

- Tolerance to standard Internet conditions (varying bandwidth; T1 too expensive)
- Available in all rooms in nursing home
- Secure (encrypted) transmissions
- "Simultaneous" live videoconferencing and recording of videos (i.e., file storage)

Tolerance to Standard Internet Conditions

MPEG

- Very high quality, especially motion
- Requires constant high (1.5 Mbps) bandwidth
- Expensive and less available
- Chosen for recording (file storage)
- H.323 / H.261
 - Smaller frame size and lower frame rate
 - Requires less constant bandwidth (64 Kbps and up)
 - Less expensive and greater industry support
 - Chosen for live videoconferencing

Available in All 200+ Rooms in Nursing Home

	1
Compaq DeskPro P3 500 128 Mbyte RAM	1,000
NEC 1525X LCD TFT monitor	670
Cisco Wireless PCI card	200
Polycom Soundpoint speakerphone	100
Cannon VC-C3 camera	1,244
Tilt/pan camera base	52
VCON Escort 25	600
Array MPEG recorder	1,000
Lowel Pro light	234
Pole for light	65
Retractable power cord	80
APC 650 UPS	260
CompuCaddy table	508
Metal shelf	12
Security alarm	60
TOTAL	\$6,085

Alternative: hard-wire all rooms

Power Options

Wide Area Network Context

 Cable links from home physician to Internet to nursing home (many hops)

Major Problem #1

- Had to encrypt live video for privacy
- Internet Service Provider's standard contract prohibits router-based encryption on physician's side
- We had to produce our own solutions

\$230 Unix Router for Encryption

- Soekris net4501 router
- Open-source FreeBSD UNIX router
- IPsec with strong 256-bit encryption
- Wireless Encryption protocol
- 133 MHz AMD elan sc 520
- 64 Mb RAM
- 4.85" x 5.7"
- \$230
- 3 ports
 - Internet
 - Video PC: secure
 - Personal PC: pass-through

Simultaneous Live Videoconferencing and Recording

End to End Picture

Videoconferencing Example

Deployment in the Clinical Setting

System Requires Training

Problem

- High turnover of nurses
- 3-person scheduling problem of telemedicine
 - Patient
 - Facilitator
 - Provider

Solution

Dedicated research assistants

Spontaneous Videoconferencing Who initiates? Who confirms

Augmented Data Flow to Intercept Calls to Physicians

Revised Data Flow to Intercept Calls to Physicians

Wireless System Caused Low Apparent Bandwidth

Floor 1

Floors 2-4

Problem

Directional performance

AP350 base station cannot filter traffic

Solution

Better antenna

Router-based traffic filter to create private network

Audio dropout required alternative means for audio communications

- Numerous Internet hops
- Internet service provider limits bandwidth

Audio dropout required alternative means for audio communications

- Numerous Internet hops
- Internet service provider limits bandwidth

Clinical Trial

Objectives

- Assess feasibility of using the laboratoryderived equipment in a real clinical setting
- Assess outcomes attributable to spontaneous, night-time videoconferencing for acute medical problems
- Assess whether videoconferencing could substitute for some bedside evaluations

Hypotheses

- Secure videoconferencing through Internet is feasible
- Satisfaction will be greater
 - Physicians/NP
 - Patients
- Fewer radiology/laboratory test
- Less referral to emergency department
- No difference in mortality
- Physicians will feel confident assessing medical conditions remotely

Components Accessible to Providers

- All participants
 - Lab and radiology data
 - Previous orders, visit notes and discharge summaries
- Intervention participants
 - Live videoconferencing
 - Previously recorded videos
 - Baseline videos
 - Live videos

Electronic Medical Record's Integration of Link to Video

Enrollment and Admissions

- Consent
- Proxy information
- Assessment of cognitive status
- Level and acuity of care

Nighttime Conferencing

- Acute nighttime problems
- Randomized study changed to observational
- Research assistant facilitate examination

Daytime Conferencing to Compare Remote to Bedside Evaluations

- Situations
 - Acute daytime problems
 - Wound care
 - Routine daily visits
- Video exam followed by in-person exam
- Assessment of new or changed orders

Sources of Data

- Enrollment and admissions
- Patient, nurse, and physician satisfaction
- Reports of technical difficulties
- Information about calls (pager messages)
- Video files
- Cost and other measures of utilization

Participants

Characteristic	All participants	Participants with videos
Age, years (mean)	61	76
Race, African-American	58	79
Gender, female	55	70
Number of calls, per resident who generated >0 calls		
1-10 calls	97	
>10 calls	3	
Number of videos, per resident with >0 videos		
1-2 videos		96
>2 videos		4

Cells contain percentages

Results Will Be Made Available Through Publications

Conclusions about Spontaneous Videoconferencing through Internet

- Feasibility: spontaneous, Internet videoconferencing is feasible
 - Special planning needed in current setting
 - Need ease of use, minimal training
 - Videoconferencing via cable modem works
- Usefulness: limited in urban academic setting
 - Not useful for many medical conditions
 - Need permanent, low-cost, ubiquitous videoconferencing equipment
 - Reverse configuration (peripheral patients) might not work, due to slow uplink
- Quality: QoS needed for voice but not visual data
- Routing: needed for security and traffic filtering
 - Expansion of integrated security mechanisms will facilitate applications

NLM NGI Telemedicine Study

- Greg Abernathy
- Heydon Buchanan
- Paul Dexter
- Joanne Fyffe
- Terry Ising
- Don Lindbergh
- Clem McDonald (P.I.)

- Theda Miller
- Marc Overhage
- Susan Perkins
- Gunther Schadow
- Sean Thomas
- Jill Warvel
- Michael Weiner